
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2020-07-29

Applications of Mathematical Optimization Methods to Digital Applications of Mathematical Optimization Methods to Digital

Communications and Signal Processing Communications and Signal Processing

Spencer Giddens
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Physical Sciences and Mathematics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Giddens, Spencer, "Applications of Mathematical Optimization Methods to Digital Communications and
Signal Processing" (2020). Theses and Dissertations. 8601.
https://scholarsarchive.byu.edu/etd/8601

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8601&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F8601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8601?utm_source=scholarsarchive.byu.edu%2Fetd%2F8601&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Applications of Mathematical Optimization Methods to Digital Communications and

Signal Processing

Spencer Giddens

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Jared Whitehead, Chair
Willie Harrison
Michael Rice

Department of Mathematics

Brigham Young University

Copyright © 2020 Spencer Giddens

All Rights Reserved

www.manaraa.com

abstract

Applications of Mathematical Optimization Methods to Digital Communications and
Signal Processing

Spencer Giddens
Department of Mathematics, BYU

Master of Science

Mathematical optimization is applicable to nearly every scientific discipline. This the-
sis specifically focuses on optimization applications to digital communications and signal
processing. Within the digital communications framework, the channel encoder attempts
to encode a message from a source (the sender) in such a way that the channel decoder
can utilize the encoding to correct errors in the message caused by the transmission over
the channel. Low-density parity-check (LDPC) codes are an especially popular code for
this purpose. Following the channel encoder in the digital communications framework, the
modulator converts the encoded message bits to a physical waveform, which is sent over the
channel and converted back to bits at the demodulator. The modulator and demodulator
present special challenges for what is known as the two-antenna problem. The main results of
this work are two algorithms related to the development of optimization methods for LDPC
codes and the two-antenna problem.

Current methods for optimization of LDPC codes analyze the degree distribution pair
asymptotically as block length approaches infinity. This effectively ignores the discrete na-
ture of the space of valid degree distribution pairs for LDPC codes of finite block length.
While large codes are likely to conform reasonably well to the infinite block length analysis,
shorter codes have no such guarantee. Chapter 2 more thoroughly introduces LDPC codes,
and Chapter 3 presents and analyzes an algorithm for completely enumerating the space
of all valid degree distribution pairs for a given block length, code rate, maximum variable
node degree, and maximum check node degree. This algorithm is then demonstrated on
an example LDPC code of finite block length. Finally, we discuss how the result of this
algorithm can be utilized by discrete optimization routines to form novel methods for the
optimization of small block length LDPC codes.

In order to solve the two-antenna problem, which is introduced in greater detail in Chap-
ter 2, it is necessary to obtain reliable estimates of the timing offset and channel gains caused
by the transmission of the signal through the channel. The timing offset estimator can be
formulated as an optimization problem, and an optimization method used to solve it was pre-
viously developed. However, this optimization method does not utilize gradient information,
and as a result is inefficient. Chapter 4 presents and analyzes an improved gradient-based
optimization method that solves the two-antenna problem much more efficiently.

Keywords: optimization, signal processing, digital communications, low-density parity-check
(LDPC) codes, two-antenna problem, aeronautical telemetry, parameter estimation

www.manaraa.com

Acknowledgements

First off, I would like to thank my advisor Dr. Jared Whitehead for his excellent support

and mentorship from the very beginning of my research career. Despite the fact that I did

not have any previous research experience, he had enough confidence in me to give me a

major role in my first research project. Had he not provided me with that experience, I

would not be where I am today.

Second, I want to thank my pseudo-advisor Dr. Willie Harrison. I appreciate the op-

portunity he gave me to begin research in a different field via a study abroad experience,

and the opportunity to continue research in that field afterwards. I greatly admire his work

ethic, integrity, and positive outlook on life, and I am grateful for the many hours he spent

helping me both with my research and my career decisions.

I also want to thank the final member of my committee, Dr. Michael Rice, for inviting

me to work on a project that allowed me to continue working in the field I began studying

with Dr. Harrison. He consistently managed to balance high expectations for my work with

a high level of confidence in my abilities, encouraging me to grow as a researcher.

I am grateful to the many other faculty members (both inside and outside BYU), TAs,

and students I have had the opportunity to learn from during my time at BYU, especially

Elliot Brown, Brooke Mosby, Michael Hansen, and Gabriella Smith, who made the ACME

program as enjoyable as it was difficult.

Outside of school, I want to thank my family, especially my parents, for their unwavering

emotional and financial support as I have worked to pursue my goals. I also want to thank

the countless friends that have supported me. I wish I could list all of you by name, but I

need to save some room for my thesis.

Most importantly, I want to thank my wife, Caitlin. I am so grateful for the many

sacrifices she makes on my behalf. Her long hours at work to support us financially and her

sacrifices of time to allow me to work on research do not go unnoticed. She is truly my best

friend and my number 1 fan.

www.manaraa.com

Contents

Contents iv

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Overview of Optimization Methods . 1

1.2 Digital Communications and Signal Processing 4

1.3 Contributions . 8

2 Background 10

2.1 LDPC codes . 10

2.2 Two-Antenna Problem . 16

3 Search Space Enumeration for LDPC Code Optimization 24

3.1 Algorithm Derivation and Analysis . 24

3.2 Objective Function Visualization . 31

3.3 Towards Optimization . 33

4 Timing Offset Estimator for the Two-Antenna Problem 36

4.1 Algorithm Derivation and Analysis . 36

4.2 Comparison to Previous Method . 48

5 Conclusion 56

5.1 Summary of Major Results . 56

5.2 Future Work . 56

Bibliography 58

iv

www.manaraa.com

List of Tables

4.1 Comparison of the number of iterations, real multiplications/divisions, addi-

tions/subtractions, and memory storage required for various portions of the

two algorithms. The units for numerical values in the table are “number of

iterations” for the first section, “real operations” for the next two sections,

and “real values to store” for the memory section. 52

v

www.manaraa.com

List of Figures

1.1 The general framework for digital communications. 4

1.2 Depiction of the two-antenna problem (from [1]). 7

2.1 The Tanner graph for (2.2). The variable nodes are on the left and the check

nodes are on the right. The variable nodes correspond to bits in the received

codeword, and have maximum degree 3. Notice that 6 of the 15 total edges

(blue, dashed) are connected to variable nodes of degree 2, while the other

9 of the 15 (black, solid) are connected to variable nodes of degree 3. So,

λ = (0, 6
15
, 9
15

)T for this code. All 15 edges are connected to check nodes of

degree 5, so ρ = (0, 0, 0, 0, 15
15

)T . 12

2.2 A contour plot of the objective function F (τ) =
∣∣[INp −P

(
P†P

)−1
P†
]
r
∣∣2 for

a specifically chosen r. 22

3.1 A visualization of the valid space of variable node degree distributions for

ne = 202. Note there are only two valid distributions, located at the bottom

right of the figure. 32

3.2 A visualization of the valid space of check node degree distributions for ne =

202. Note the set forms a subset of a plane in R4. 32

3.3 A visualization of the continuous dependence of bit error rate (BER) on lo-

cation in the space of valid check node degree distributions for the left-most

variable node degree distribution. 34

3.4 A visualization of the continuous dependence of BER on location in the space

of valid check node degree distributions for the right-most variable node degree

distribution. 34

vi

www.manaraa.com

4.1 Plot of the average number of objective function evaluations necessary for

convergence of the approximate gradient descent algorithm for various step

sizes assuming h = [1/
√

2 − 1/
√

2]ᵀ. 41

4.2 Plot of the number of successful timing offset estimations out of the 1000

simulations performed for various step sizes assuming h = [1/
√

2 − 1/
√

2]ᵀ. . 41

4.3 Accuracy (as measured by the percentage of successful estimates) of both

the approximate gradient descent and modified Nelder-Mead algorithms as

functions of Eb/N0 (dB). 49

4.4 Error variance for the timing estimator for both algorithms, as well as the

CRB for this variance, as a function of Eb/N0 (dB). 51

4.5 Error variance for the channel estimator for both algorithms, as well as the

CRB for this variance, as a function of Eb/N0 (dB). 51

4.6 Histogram of the number of real additions/subtractions required for conver-

gence for both algorithms. 54

4.7 Histogram of the number of real multiplications/divisions required for conver-

gence for both algorithms. 54

vii

www.manaraa.com

Chapter 1. Introduction

Optimization is of interest to virtually every scientific discipline, though the exact way in

which it is used varies drastically. Mathematics is interested in optimization from a purely

theoretical standpoint. By considering optimization methods generally, rather than only in

the context of a specific problem, a unifying theory can be developed that allows optimization

techniques to be successfully applied across multiple disciplines.

Other disciplines are also interested in optimization, but their interest is typically to

solve a practical problem. In business, an organization may seek to maximize their profits.

In computer science, a common goal is to develop algorithms that minimize computational

cost while achieving the desired results. A civil engineer, meanwhile, might be interested

in maximizing the efficiency of a new public roadway. Despite these differences, the task at

hand is fundamentally the same: to determine, out of a set of possible choices, the choice

which leads to the “best” outcome. It should come as no surprise, given all of this, that

optimization also has applications in communication theory and signal processing.

This chapter first introduces the formal mathematical definitions related to optimization

as they will be used throughout this work. Next, it provides introductory material neces-

sary to understand the fields of communication theory and signal processing, to which the

optimization methods developed later on will be applied. After providing this material as

context, the chapter concludes by listing the contributions made by this thesis to the fields

of communication theory and signal processing.

1.1 Overview of Optimization Methods

Depending on the context and application, optimization could either refer to minimization

or maximization. As is common in optimization literature, the following definitions will

assume that minimization is the goal. We note that it is usually straightforward to convert a

minimization method to a maximization method if desired, and that in some circumstances

1

www.manaraa.com

maximization is equivalent to the minimization of a slightly modified problem [2].

Definition 1.1. An optimization problem in standard form is written

minimize
x∈X

f(x)

subject to gi(x) ≤ 0

hj(x) = 0

where i = 1, 2, . . . ,m and j = 1, 2, . . . , p. In standard form, X ⊂ Rn is called the search

space, f : X → R is called the objective function, the gi : X → R are called inequality

constraints, and the hi : X → R are called equality constraints. If m = 0 and p = 0, the

optimization problem is unconstrained.

Optimizing an objective function f could refer to either finding the minimum value of f ,

denoted f ∗, or to finding the value(s) of x ∈ X, denoted x̂, such that f(x̂) = f ∗. For this

work, we use the latter definition, and we denote the set of such values by argmin
x

f(x).

Definition 1.2. An optimization method is defined to be any algorithm whose goal is to

find

argmin
x

f(x)

where f is the objective function of an optimization problem in standard form.

This definition encompasses a large range of algorithms. Which algorithm to use and

how effectively the algorithm performs the optimization are dependent on the information

known about the optimization problem. Almost certainly, the easiest optimization problems

to solve are those where the objective function and the search space are continuous, convex,

and first and second order partial derivative information for the objective function is known

and easily computed. The first order partial derivatives can be organized into a vector known

as the gradient, and second order partial derivatives can be organized into a matrix called

the Hessian. Newton’s method performs famously well as an optimization method under

these circumstances, but that is not the only method available. Entire books have been

2

www.manaraa.com

written containing optimization methods useful for when the objective function and search

space are convex [3, 4]. Non-convex optimization has also been of interest lately, especially in

light of the current popularity of deep neural networks [5]. When the Hessian is unknown or

costly to obtain (or approximate), first order methods like gradient descent are also typically

effective [6]. In the case where neither first order nor second order information is available,

a myriad of derivative-free and blackbox optimization methods may be viable [2]. Finally,

it should be mentioned that an optimization problem with a discrete search space is usually

far more difficult to solve than a problem with a continuous search space [7].

When choosing an optimization method for a particular problem, the general rule of

thumb is to choose a method that utilizes as much information about the problem as is

available. As explained in [2], if the gradient of the objective function is known and easy to

compute, a gradient-based method will almost always outperform a method that does not use

the gradient. It is also worth mentioning here that the majority of optimization methods of

interest are iterative. While there do exist some methods whereby the optimization problem

may be solved by direct computation, these are only applicable under special circumstances,

and in the case where they are applicable, the solution tends to be easy enough that further

study of the optimization method itself is unnecessary.

A natural question to ask is how can optimization methods be compared to determine

which is best? There are a number of metrics that can be considered when comparing

algorithms. First and probably most obvious is the accuracy of the algorithm. The closer an

optimization method gets to the true minimizer, the more accurate the method. Related to

the accuracy is the variance of an algorithm. In other words, if an optimization method is

used repeatedly on the same problem, how much variance is there in the results? One may

also consider the number of iterations required by the optimization method to produce its

results. Similarly, the number of objective function evaluations required by the algorithm

may be of interest. Note these last two metrics are usually related, but not always the same

thing. Usually, there is a trade-off between the accuracy/variance of an optimization method,

3

www.manaraa.com

Source
Source

Encoder
Encrypter

Channel
Encoder

Modulator

Channel

Sink
Source

Decoder
Decrypter

Channel
Decoder

Demodulator

Figure 1.1: The general framework for digital communications.

and the number of iterations or objective function evaluations required, and therefore the

best optimization method may differ for different problems.

To conclude this section, it is worth discussing one (though not the only) limitation

of optimization algorithms. Even the best optimization methods are not guaranteed to

successfully solve every problem, and some problems may be impossible to solve entirely

without a bit of luck. A classic example of this type of problem is when the objective

function is highly non-convex with a large number of local minima. Iterative optimization

methods under these circumstances are unlikely to converge to the true minimizer, and in

some cases may never do so unless initialized in very specific regions of the search space.

Thus, it is crucial to have a firm understanding of the search space and the structure of the

objective function when developing an optimization method for a specific problem.

1.2 Digital Communications and Signal Processing

In this section, we briefly introduce the fields of digital communication and signal processing.

Digital communication refers to the transmission of a message from a sender, also called the

source, to a receiver, also called the sink. A diagram depicting digital communication is

shown in Figure 1.1. This diagram depicts the path that a message travels to get from the

source to the sink. First, the message is passed through the source encoder. The source

encoder encodes the message into a sequence of bits in a manner that attempts to use

the fewest number of bits possible to completely represent the information in the message.

4

www.manaraa.com

Next, the encoded message is encrypted using techniques from cryptography. After that,

the encrypted message is passed through the channel encoder. The channel encoder encodes

the encrypted sequence of bits into blocks of bits called codewords. This is done in a way

that allows transmission errors to be corrected later on. The modulator then converts this

final bit sequence to a waveform which is transmitted over a physical channel, such as a

wire or the air for wireless channels. At the receiver, the demodulator’s job is to detect and

interpret the waveform that was sent over the channel. It converts the waveform back into

bits, which are then decoded and decrypted by inverting the processes of the encoders and

the encrypter, before finally making their way to the sink.

It is likely that an optimization problem can be formulated that relates to any of the steps

in the digital communication framework, but this work focuses on developing optimization

methods for problems in two of these steps in particular. Chapter 3 discusses an optimization

method that could lead to an improved algorithm sometimes used for the channel decoder,

while Chapter 4 develops and analyzes an optimization method used in the demodulator of

a specific communication scheme. The unifying theme between the optimization methods

of both chapters is that transmission of the message over the channel leads to a variety of

errors in the message, and the improvement of the systems used to correct these errors can

be formulated as an optimization problem.

1.2.1 Channel Encoder Errors. The first type of error in the transmission that typi-

cally needs to be corrected is called a bit error.

Definition 1.3. A bit error occurs when the received sequence incorrectly has a 0 where a 1

was located in the transmitted sequence (or vice-versa) usually due to noise in the channel.

This can be measured by either comparing the bit sequence before the channel encoder

with the bit sequence after the channel decoder, or by comparing the bit sequence after the

channel encoder with the bit sequence before the channel decoder. The goal of the channel

encoder is to encode the message in such a way that the decoder is able to correct bit errors

caused by the channel. An encoder/decoder pair that does this is called an error-correcting

5

www.manaraa.com

code.

The performance of error-correcting codes can be measured by considering the BER, or

the number of bit errors divided by the number of bits, after the channel decoder. Some

codes perform better than others, but there is a limit to how well these codes can perform.

More specifically, Shannon’s noisy-channel coding theorem states that for a given amount

of noise in a channel, there exists a code which can communicate messages virtually error-

free up to a maximum communication rate (i.e. bits per unit time), called the Shannon

capacity [8]. To date, a few error-correcting codes have been shown to achieve Shannon

capacity, including turbo codes [9], polar codes [10], and low-density parity-check (LDPC)

codes [11]. This work focuses on the optimization of LDPC codes, which will be introduced

in more detail in Chapter 2.

1.2.2 Modulation Errors. We now shift to introduce a different type of transmission

error that occurs in the demodulator for a specific problem in aeronautical telemetry called

the two-antenna problem. Note that the two-antenna problem is discussed in greater detail

in [12] and [1], but is summarized here for completeness. Aircraft, especially military aircraft,

collect data while in flight that need to be transmitted to the ground in real time. To

accomplish this, a transmitter antenna is placed on the bottom of the aircraft that sends

information to a receiver on the ground. However, under some circumstances, the body of the

aircraft may prevent the transmitted signal from reaching the ground antenna. To counter

this, a second antenna is placed on the top of the aircraft that transmits the same message

as the first antenna. When the signal from one of the two antennas is detectable by the

ground receiver, the message can be transmitted successfully. However, this second antenna

complicates matters when the signals from both antennas are simultaneously available. In

this case, the two signals self-interfere, making it difficult for the demodulator to correctly

determine the intended message. This self-interference is known as the two-antenna problem,

and is depicted in Figure 1.2.

To solve the two-antenna problem, a number of variables must be estimated at the

6

www.manaraa.com

Figure 1.2: Depiction of the two-antenna problem (from [1]).

7

www.manaraa.com

demodulator. The one that will be primarily discussed in this work is the timing offset.

Definition 1.4. The timing offset is the difference between the expected time of the received

signal and the time it was actually received. In a communication system, the timing offset

must be estimated and corrected in order to accurately demodulate the signal. Since there

are two signals in the two-antenna problem, there are two timing offsets to estimate at the

demodulator. The joint estimator of these offsets can be formulated as an optimization

problem, which will be further explained in Chapter 2.

1.3 Contributions

This work makes a number of important contributions towards optimization methods used in

digital communication and signal processing. First, a unique objective function and search

space are developed for the improvement of LDPC codes, leading to a novel algorithm

for the enumeration of the search space. This algorithm is presented and analyzed in the

context of the objective function and its possibility for improving upon current state-of-

the-art optimization methods for LDPC codes. Next, an improved optimization method is

developed to solve an optimization problem necessary to estimate the timing offset. The

previously used algorithm, developed in [1], was a modification on the popular derivative-

free simplex algorithm developed by Nelder and Mead [13], and will be explained in greater

detail in Chapter 2. The improved algorithm, explained in Chapter 4, uses first order gradient

information to decrease the temporal complexity of the estimation. The algorithm chosen is

compared to other potential algorithms, and is shown to outperform the previous one.

The outline of this thesis is as follows. Chapter 2 provides the background necessary

to understand the algorithms developed in Chapter 3 and Chapter 4, including a thorough

explanation of LDPC codes, the derivation of the estimators for the two-antenna problem,

and the presentation of the previously used timing offset estimator. Next, Chapter 3 develops

and analyzes the algorithm for enumerating the search space of the LDPC code optimization

problem and puts it into the context of current LDPC optimization methods. Then, Chapter

8

www.manaraa.com

4 develops and analyzes the improved timing offset estimator, before providing detailed

comparisons with the previous algorithm. Chapter 5 then summarizes and concludes the

work.

9

www.manaraa.com

Chapter 2. Background

One of the fascinating things about optimization methods is that they are applicable to a wide

range of fields. As a result, a full understanding of the details and impacts of an optimization

algorithm cannot be obtained without first acquiring the necessary domain knowledge. This

chapter provides the digital communication and signal processing background required to

fully appreciate the algorithms presented in Chapter 3 and Chapter 4. For LDPC codes,

this chapter provides a more detailed explanation of the codes, their properties, and the

current state of their optimization in the literature. For the two-antenna problem, the

chapter derives the needed estimators and explains the method previously used to obtain

these estimates.

Before proceeding, we provide a brief description of notation used throughout the thesis.

If x is a vector, we denote the ith element of x by xi (zero-based indexing is assumed). To

denote the ith through jth elements of x, we write xi:j. If j is not written explicitly in this

notation (i.e. xi:), we mean all elements of x from the ith one to the end of the vector.

2.1 LDPC codes

This section provides all of the background necessary to understand the contributions made

in Chapter 3 towards the optimization of LDPC codes. Note that the descriptions of LDPC

codes and background provided are based on the presentation of the same content in [14].

First, some basic definitions related to LDPC codes are given and illustrated with an example.

Then, the constraints on the search space are presented. Finally, the section concludes with

a discussion of the current state of LDPC code optimization, and where this work fits into

the literature.

2.1.1 Basic Definitions. The goal of the channel encoder is to encode its input, a series

of message bits, into a series of coded bits (i.e., a codeword) such that the channel decoder is

10

www.manaraa.com

able to correct errors that occur in the series of coded bits as they are transmitted through

the channel. There are many ways to design effective channel encoders and decoders, with

varying degrees of success, and LDPC codes represent a particularly effective design. These

codes were invented by Robert Gallager in the 1960s [15], though not popularized until

rediscovered by MacKay in the 1990s [16, 11, 17].

We provide a high-level understanding of LDPC codes to provide context for their opti-

mization. First, the series of incoming message bits are broken into blocks of k bits, usually

denoted by row vectors. Then, an additional m = n − k bits, called parity-check bits, are

added to the end of each block to make codewords of n total bits. The specific code used,

which is fixed in advance, selects subsets of bits within the codeword and requires that the

mod-2 sum of these bits is 0 (i.e. has even parity). The values of the parity-check bits

are selected such that all of these mod-2 sums are satisfied. Furthermore, the mod-2 sums

defined by the code uniquely define a matrix, called the parity-check matrix and denoted

by H, which when multiplied by a block of n bits produces the all-zero vector if and only

if the block represents a valid codeword. This provides the decoder with a way to detect if

an error has occurred during the transmission. Finally, we define the rate of the code to be

k/n, since every n coded bits correspond precisely to k message bits.

Example 2.1. Let n = 6, k = 3, and assume that a particular block of message bits is

m = [1, 1, 1]. The codeword associated with these message bits is c = [1, 1, 1, c3, c4, c5],

where c3, c4, and c5 are the parity check bits, which are yet to be determined. An individual

LDPC code is defined by its list of parity-check constraints. If we assume that the specific

code we are using requires

c0 + c1 + c2 + c4 + c5 = 0 mod 2

c0 + c2 + c3 + c4 + c5 = 0 mod 2

c0 + c1 + c2 + c3 + c5 = 0 mod 2,

(2.1)

then it can be determined by solving a system of linear equations that c3 = 1, c4 = 1, and

11

www.manaraa.com

v0

v1

v2

v3

v4

v5

c0

c1

c2

Figure 2.1: The Tanner graph for (2.2). The variable nodes are on the left and the check
nodes are on the right. The variable nodes correspond to bits in the received codeword, and
have maximum degree 3. Notice that 6 of the 15 total edges (blue, dashed) are connected to
variable nodes of degree 2, while the other 9 of the 15 (black, solid) are connected to variable
nodes of degree 3. So, λ = (0, 6

15
, 9
15

)T for this code. All 15 edges are connected to check
nodes of degree 5, so ρ = (0, 0, 0, 0, 15

15
)T .

c5 = 0. The parity check matrix for (2.1) is

H =

1 1 1

1 0 1

1 1 1

0 1 1

1 1 0

1 1 1

. (2.2)

Note it is easily verified that cH = 0.

It is worth mentioning here that LDPC codes used in practice utilize much longer block

lengths than the code in the example. In order for the decoder to be computationally feasible,

the parity check matrix needs to be sparse, or in other words have low-density (hence the

name low-density parity-check codes). This is accomplished by increasing the codeword

block length n and using small subsets of the coded bits for our parity checks. So, strictly

speaking, the example shown is not an LDPC code, but it is a helpful illustration.

12

www.manaraa.com

Definition 2.2. LDPC codes are commonly described using bipartite Tanner graphs [18], a

graphical representation of the parity check matrix. In these graphs, one set of nodes, called

the variable nodes, represents the codeword, with each node corresponding to one coded bit.

The other set of nodes, called the check nodes, represents the parity-check constraints. An

undirected edge is drawn from variable node i to check node j if there is a 1 in the ith row

and jth column of the parity check matrix. This representation is used mainly due to its

convenience for visualizing the algorithm used by the decoder.

Definition 2.3. A cycle in a graph is defined to be a path between nodes along edges such

that the first node is the same as the last node, and no other node in the path repeats.

Definition 2.4. The degree of a node is defined to be the number of edges connected to

that node.

Definition 2.5. A distribution on the variable nodes, denoted by λ, is defined to be a vector

of length equal to the maximum variable node degree, where the ith component of λ is the

proportion of edges connected to variable nodes of degree i+ 1. A distribution on the check

nodes is defined analogously and is denoted by ρ. A tuple containing λ and ρ is commonly

referred to as a degree distribution pair. Finally, an LDPC code ensemble, or family, is the

collection of codes with the same degree distribution pair. See Figure 2.1 for an example of

these definitions.

If the received bits are not a codeword, the decoder uses the parity-check bits to correct

the errors via belief propagation [19, 20], a message-passing decoding algorithm that has

been shown to perform very close to the theoretical Shannon capacity [8, 21], making LDPC

codes very powerful in many applications [22]. Details on the implementation of the belief

propagation algorithm can be found in [20], but they are not important to this work, so they

are not summarized here.

2.1.2 Search Space Constraints. The error-correcting capabilities of LDPC codes are

dependent on the configuration of the parity-check constraints that define individual codes.

13

www.manaraa.com

In other words, different parity-check matrices, or equivalently, different arrangements of the

edges in the Tanner graph, result in different post-decoder BERs (recall the bit error rate

was defined in Chapter 1 to be the number of bit errors divided by the number of bits).

An optimization problem interested in the best error-correction capabilities might attempt

to find the specific LDPC code which minimizes the BER. However, the search space for

such an optimization problem would be prohibitively complex given typical codeword block

lengths and the resulting size of the parity check matrices. Fortunately, LDPC codes within

the same code family tend to have very similar error-correction capabilities, so optimization

problems tend to use the space of valid degree distribution pairs as the search space.

Let dv be the maximum variable node degree, dc be the maximum check node degree, n

be the block length of the code (the length of the codewords), ne be the number of edges

present in the bipartite graph, and m = n(1 − r), where r is the rate of the code. For a

degree distribution pair to be valid, it must adhere to the following:

dv−1∑
i=0

λi = 1, (2.3)

dc−1∑
i=0

ρi = 1, (2.4)

dv−1∑
i=0

λi
i+ 1

=
n

ne
, (2.5)

dc−1∑
i=0

ρi
i+ 1

=
m

ne
, (2.6)

λi ≥ 0, (2.7)

ρi ≥ 0. (2.8)

In addition, we require λ0 = ρ0 = 0 in order to ensure there are no nodes of degree one,

which are useless for decoding. The constraints in (2.3), (2.4), (2.7), and (2.8) are due to the

fact that λ and ρ define distributions on the proportion of edges connected to variable nodes

and check nodes, respectively, of certain degrees. Meanwhile, constraints (2.5) and (2.6)

14

www.manaraa.com

prevent logical fallacies such as, for example, λ = (0, 7
15
, 8
15

)ᵀ, meaning 7 edges are connected

to variable nodes of degree 2, an obvious impossibility.

2.1.3 Optimization Problem. Today, the use of LDPC codes is widespread and well-

documented. As a result, there have been a number of methods developed to try to optimize

the code construction process (e.g., [22, 23, 24]). Let X be the set of all valid degree

distribution pairs and let f be the function mapping elements of this set to the average BER

for the code family described by the element of X. The optimization problem can be written

in standard form as

minimize
(λ,ρ)∈X

f(λ, ρ)

subject to − λi ≤ 0

− ρi ≤ 0

dv−1∑
i=0

λi − 1 = 0

dc−1∑
i=0

ρi − 1 = 0

dv−1∑
i=0

λi
i+ 1

− n

ne
= 0

dc−1∑
i=0

ρi
i+ 1

− m

ne
= 0.

(2.9)

Most of the methods developed to date for the optimization of LDPC codes, consider

code design asymptotically as the block length approaches infinity [22, 25]. While there are

some methods out there which seem to avoid directly assuming infinite block length in their

optimization [23, 24, 26], these methods still rely on exceptionally large block lengths for

performance estimations or otherwise utilize infinite block length analysis to some degree.

Although these optimization methods have yielded positive results for large codes, they ig-

nore the underlying structure of LDPC code degree distributions, and carry no guarantees

for code design with shorter block lengths. More specifically, the infinite block length as-

sumption ignores the right-hand side of the constraints in (2.5) and (2.6). At finite block

15

www.manaraa.com

lengths, those constraints have the effect of discretizing the space of valid LDPC code de-

gree distributions, and the discretized space is progressively more sparse as the block length

decreases. Thus, the degree distribution pairs produced by common optimization methods

are not, strictly speaking, likely to be in the space of valid degree distribution pairs for finite

block lengths, so the results of such optimization can only be utilized approximately in any

practical code. For codes of smaller block length, many of the assumptions made in infinite

block length LDPC code optimization are much farther from the truth than for large codes.

Furthermore, smaller codes require more “rounding” with the degree distributions to find a

valid code than do larger codes.

For the various reasons mentioned so far, it should be apparent that removing the infinite

block length assumption and optimizing directly over the discrete valid degree distribution

pair search space is of interest. In order to accomplish this, there must first be a method

developed to enumerate the discrete search space in a way that allows an optimization method

to “walk” through it. Chapter 3 presents and analyzes a novel algorithm that does exactly

that. It is also worth mentioning here that asymptotic optimization assumes there are no

cycles in the graph, which are well known to hinder performance [24], and are obviously

unavoidable in a finite block length code. Though there are methods to reduce the number

of small cycles in finite length LDPC codes [24, 26], even these techniques require good degree

distributions as a starting point, which can be better accomplished for small codes through

discrete code enumeration.

2.2 Two-Antenna Problem

In [12], the solution to the two-antenna problem was shown theoretically. Rice et al. [1,

27] then implemented these ideas on a practical aeronautical telemetry system, including

developing an optimization method to estimate the timing offset. Chapter 4 of this work

extends [1] by improving upon this optimization method. This section summarizes the

background information from [1] necessary to understand the contributions made in Chapter

16

www.manaraa.com

4.

First, the two-antenna problem is formulated mathematically. Next, the estimators for

the variables required to solve the two-antenna problem are derived, and the estimator for

the timing offset is shown to require an optimization method. This section concludes with

the presentation of the optimization problem in standard form and a description and analysis

of the optimization method previously used to solve the problem.

2.2.1 Problem Formulation. At the modulator step of Figure 1.1, the coded bits that

come out of the channel encoder are transformed into a modulated signal or waveform that

can be sent over the channel. In this formulation, the complex-valued low-pass equivalent

waveforms [28] are used to represent the real-valued bandpass signals. The continuous time

complex-valued low-pass equivalent waveform is denoted s(t). When represented in discrete

time, we write the signal as s(nT), where T is the spacing (in units of time) between samples,

and n is an integer. In this case, s(nT) represents the nth sampled value of the continuous

waveform s(t). Note that for the purposes of this work, the signal is complex-valued.

Here are some important definitions.

Definition 2.6. The timing offset is the delay (in units of time) of the signal that was

actually received relative to the expected signal.

Definition 2.7. The complex-valued attenuation refers to the reduction of signal strength

due to the channel.

Definition 2.8. The power spectral density of a signal is the power in the signal as a function

of the frequency.

Definition 2.9. The energy per bit, usually denoted Eb, is the ratio of the amount of energy

in the signal to the number of bits transmitted.

Definition 2.10. A white complex-valued wide-sense stationary random process z(t) is a

17

www.manaraa.com

complex-valued random process with

E{z(t)} = 0, all t (2.10)

E{z(t+ τ)z∗(t)} = 2N0δ(τ), (2.11)

where E{·} is the expectation operator, z∗(t) is the complex conjugate of z(t), and δ(τ) is the

Dirac delta function. The power spectral density of z(t) is the Fourier transform of (2.11)

Sz(f) = 2N0. (2.12)

Definition 2.11. Finally, the signal-to-noise ratio is the ratio of the power in the signal

to the power in the noise. Normalizing by the number of bits gives a measurement for this

quantity, commonly expressed as Eb/N0 in units of dB. Higher values of Eb/N0 correspond

to a less corrupted signal at the demodulator.

For the two-antenna problem, two signals carrying the same information, denoted s0(t)

and s1(t), are transmitted simultaneously from the upper and lower antennas. Both of these

signals experience timing offsets, denoted respectively as ε0 and ε1, as well as a complex-

valued attenuation, respectively h0 and h1. In addition, assume the received signal experi-

ences thermal noise modeled by a complex-valued zero-mean white Gaussian random process,

denoted by z(t). Assume z(t) has power spectral density 2N0. The received signal can be

written in continuous time as

r(t) = h0s0(t− ε0) + h1s1(t− ε1) + z(t). (2.13)

Now assume the signal is sampled at T -spaced intervals. In the discrete-time domain,

define τ0 = ε0/T , τ1 = ε1/T , and w(nT) to be the sampled contribution of z(t). Assume

that for each n, w(nT) is a sample from a complex-valued Gaussian random variable with

zero mean and variance 2σ2 = 2N0/T , and that the samples are independent and identically

18

www.manaraa.com

distributed (iid). Then, the received signal can be written in discrete time as

r(nT) = h0s0((n− τ0)T) + h1s1((t− τ1)T) + w(nT). (2.14)

Note that (2.13) and (2.14) are identical to (1) and (2) from [1].

The goal is to obtain estimates of h0, h1, τ0, and τ1 from r(nT) in order to accurately

reconstruct the intended signal. To accomplish this, a sequence of Lp pilot bits is periodically

inserted after every Ld data bits into the signal sent by each of the two antennas. At the

receiver, these pilot bits can be used to construct effective estimators for the desired values.

2.2.2 Estimators. For the ARTM CPM waveform utilized in this work, bits in the code-

word are mapped to symbols at a rate of 2 bits/symbol. Then these symbols are modulated

to form the waveform that is sent over the channel, which is then sampled at a rate of N

samples/symbol at the demodulator. The details of the ARTM CPM waveform and corre-

sponding modulation are beyond the scope of this work, but can be found in [29]. Assume

N = 4 samples/symbol, so there are Np = N × Lp/2 samples corresponding to the pilot

bits. Also assume without loss of generality that the samples corresponding to the modu-

lated pilot bits begin at index n = 0 and denote these samples by p0(nT) and p1(nT) for

n = 0, 1, . . . , Np − 1. We can now write (2.14) for the pilot sequence as

r(nT) = h0p0((n− τ0)T) + h1p1((t− τ1)T) + w(nT). (2.15)

Stacking the received samples into an Np × 1 vector yields the equivalent matrix-vector

equation

r = Ph + w (2.16)

19

www.manaraa.com

where P is the Np × 2 matrix

P =

p0(−τ0T) p1(−τ1T)

p0((1− τ0)T) p1((1− τ1)T)

...
...

p0((Np − 1− τ0)T) p1((Np − 1− τ1)T)

, (2.17)

h is the 2× 1 vector

h =

h0
h1

 , (2.18)

and w is the Np × 1 vector

w =

w(0)

w(T)

...

w((Np − 1)T)

. (2.19)

Note that P is a function of the parameter vector

τ =

τ0
τ1

 . (2.20)

Since the elements of w are iid complex-valued zero-mean circularly symmetric Gaussian

random variables with variance 2σ2, the conditional probability density function of r can be

written as

f(r|h0, h1, τ0, τ1) =
1

(2πσ2)Np
exp

{
− 1

2σ2
|r−Ph|2

}
. (2.21)

We seek to maximize (2.21), which is equivalent to minimizing

|r−Ph|2. (2.22)

Combining (2.22) with the maximum likelihood (ML) estimate of h via least squares produces

20

www.manaraa.com

the estimators for τ and h:

τ̂ = argmin
τ∈T

{∣∣[INp −P
(
P†P

)−1
P†
]
r
∣∣2}, (2.23)

ĥ =
(
P̂†P̂

)−1
P̂†r, (2.24)

where P is assumed to be a function of τ , P† is the Hermitian (conjugate transpose) of P,

P̂ = P(τ̂), and T is the search space for τ . Note that (2.23), (2.24), and their respective

derivations are equivalent to (13a), (13b), and their respective derivations from [1] when the

frequency offset is assumed to be 0.

2.2.3 Optimization Problem. A thorough understanding of the search space T is nec-

essary in order to perform the optimization required for (2.23). First, the pilot sequence is

detected within the waveform by correlating the sampled waveform with the known pilot

samples. Thus, at least one of τ0 and τ1 must be within one sample time of the true value

(i.e. between −0.125 and 0.125). In addition, due to the physical dimensions of the aircraft

and commonly used symbol rates, the differential delay, or the difference between τ0 and τ1,

is restricted to be less than one symbol time (less than or equal to three sample times) in

absolute value1. This means that if, without loss of generality, −0.125 ≤ τ0 ≤ 0.125, then

τ0 − 0.875 ≤ τ1 ≤ τ0 + 0.875, so overall both τ0 and τ1 are bounded between −1 and 1.

Next, the nature of the relationship between τ and P is too complicated to permit the

real time computation of P on the required hardware for arbitrary values of τ in the assumed

interval. In [1], this problem was solved by pre-computing and saving P for quantized values

of τ . A quantization parameter, Q, was fixed, and P was pre-computed and stored for all

values of τ such that each τ0 and τ1 were integer multiples of 1/Q between −1 and 1. For

Q = 32, this results in T consisting of a 65 × 65 grid of possible values, and the optimizer

seeks to find the value of τ ∈ T that minimizes the objective function.

1If the dimensions of the airborne test article and the symbol rate define a differential delay in excess of
one symbol time, common practice is to insert a delay at the transmitter to force the differential delay to be
less than one symbol time at the receiver.

21

www.manaraa.com

-1 -0.5 0 0.5 1

0

-1

-0.5

0

0.5

1

1

0

50

100

150

200

250

300

Figure 2.2: A contour plot of the objective function F (τ) =
∣∣[INp − P

(
P†P

)−1
P†
]
r
∣∣2 for a

specifically chosen r.

This optimization problem can be written in standard form as

minimize
τ∈T

f(τ), (2.25)

where the objective function is

f(τ) =
∣∣[INp −P

(
P†P

)−1
P†
]
r
∣∣2. (2.26)

Note this optimization problem does not have any listed constraints because in this case it

was more convenient to integrate the constraints into the creation of the search space.

Finally, the memory storage analysis performed in [1] can be applied directly to the

situation in this work, so in addition to pre-computing values for P, values of (P†P)−1 are

also pre-computed and stored. The interested reader is referred to [1] for a more detailed

explanation.

22

www.manaraa.com

2.2.4 Previous Method. The objective function (2.26) is shown in Figure 2.2. For this

figure, r was constructed using τ = (0.123, 0.6)ᵀ, h = (1/
√

2,−1/
√

2)ᵀ, and noise samples

in w were generated assuming a signal-to-noise ratio Eb/N0 of 10 dB. Note the obvious

minimizer at approximately the value of τ used to generate r, showing that minimizing this

objective function is equivalent to estimating τ . An optimization algorithm over the search

space T would attempt to find the closest τ on the grid to the true minimizer.

Finally, [1] developed an optimization algorithm used to estimate (2.23) by searching over

T . This algorithm modifies the famous simplex method created by Nelder and Mead [13] so

that the simplices always operate on the grid points contained in T . Though the algorithm

does accurately estimate the timing offset, it is costlier to run than is necessary. It is clear

from Figure 2.2 that the objective function demonstrates a level of convexity over the search

space T . For convex optimization problems, it is well known that gradient-based methods

are optimal. This fact is noted in [1], but gradient-based methods are not explored in detail

because it was hypothesized that either the direct computation or approximation of the

gradient would be prohibitively expensive, or that it would be impossible to guarantee that

gradient-based iterates would remain in T .

Chapter 4 demonstrates that gradient-based optimization methods are in fact feasible

for this problem. Furthermore, a gradient-based algorithm is developed that outperforms

the modified Nelder-Mead approach from [1] in terms of computational complexity, while

maintaining the same level of accuracy in the timing offset estimation.

23

www.manaraa.com

Chapter 3. Search Space Enumeration for

LDPC Code Optimization

As mentioned in Chapter 2, this chapter presents a novel algorithm for enumerating the

discrete search space of valid degree distribution pairs for the optimization of LDPC codes.

Note that this chapter is a modified version of [14], adapted to flow well with the rest of the

thesis. First, the algorithm is derived and explained, and a temporal complexity analysis is

performed. Next, the objective function is visualized and is shown to demonstrate a pattern

over the search space that can be exploited by iterative optimization methods to solve the

LDPC code optimization problem in (2.9). The chapter concludes with a discussion of how

the algorithm could be utilized in future works to optimize LDPC codes differently from

current methods.

3.1 Algorithm Derivation and Analysis

Using constraints (2.3) through (2.8), this section derives an algorithm to completely enu-

merate every valid degree distribution pair for a given block length, code rate and maximum

variable and check node degrees. For convenience, the analysis is broken into steps.

(i) We show that, given a fixed number of edges in the bipartite graph and one particular

valid degree distribution pair, we can find all other valid degree distribution pairs with

the same number of edges.

(ii) We demonstrate that there are a minimum and maximum number of edges possible

for a fixed block length, fixed code rate, and fixed maximum variable and check node

degrees.

(iii) We explain a way to find one particular valid degree distribution pair given any number

of edges between the minimum and maximum number possible.

24

www.manaraa.com

The combination of these three steps yields an algorithm that can enumerate every valid

degree distribution pair for a finite block length LDPC code. The section concludes with a

complexity analysis for the algorithm.

3.1.1 Step 1: Finding Remaining Valid Pairs. For the first step, assume a fixed

number of edges, ne, and a given valid degree distribution pair, (λ, ρ). All other valid degree

distribution pairs can be found from these assumptions. If λ̂ is any other valid variable node

degree distribution, then λ̂ = λ+ h for some step h.

Since equations (2.3) and (2.5) must hold for λ and λ̂ (note λ0 = λ̂0 = 0, so h0 = 0),

then

dv−1∑
i=1

hi = 0, (3.1)

dv−1∑
i=1

hi
i+ 1

= 0. (3.2)

This set of constraints can be represented in matrix form as

1
2

1
3
· · · 1

dv

1 1 · · · 1

h = 0, (3.3)

=⇒ Ch =

1 0 −2
4
−4

5
· · · 2(3−dv)

dv

0 1 6
4

9
5
· · · 3dv−6

dv

h = 0. (3.4)

where C is the constraint matrix obtained by Gaussian elimination.

From (3.4), it is clear that for h to be in the null space of C as required, the degrees of

freedom can be decreased by two, so

h1 =
dv−1∑
i=3

2(i− 2)

i+ 1
hi, (3.5)

25

www.manaraa.com

h2 =
dv−1∑
i=3

3− 3i

i+ 1
hi. (3.6)

Next, constraint (2.7) needs to be met for both λ and λ̂, so

0 ≤ λ̂i, (3.7)

=⇒ 0 ≤ λi + hi, (3.8)

=⇒ −hi ≤ λi. (3.9)

These constraints can be combined with (3.5) and (3.6) to produce the matrix inequality

−2
4
−4

5
· · · 2(3−dv)

dv

6
4

9
5
· · · 3dv−6

dv

−1 0 · · · 0

0 −1 · · · 0

· · ·

0 0 · · · −1

h3: = Ah3: ≤ λ1:. (3.10)

where the ≤ operates element-wise. Note A is dependent on dv, but not on λ or ne.

Applying (3.9) and (2.7) to the given valid λ shows that −1 ≤ hi ≤ 1 for all i. In

addition, if λ is changed by some amount h, each hi must be an integer multiple of i+1
ne

. This

is because the number of edges connected to variable nodes of degree i + 1 must always be

an integer multiple of i+ 1, and ne is assumed fixed.

Finally, we summarize how all other valid degree distribution pairs can be found given a

fixed number of edges, ne, and one valid pair in particular, (λ, ρ). First, for all i ≥ 3, create

a set of values, denoted Si for hi by taking all integer multiples of i+1
ne

in the interval [−1, 1].

Use these lists to construct a set of vectors

H =

{
h
∣∣hi ∈ Si, i ≥ 3;h0 = 0;h1 =

dv−1∑
i=3

2(i− 2)

i+ 1
hi;h2 =

dv−1∑
i=3

3− 3i

i+ 1
hi

}
. (3.11)

26

www.manaraa.com

Now, remove all vectors from H that fail to satisfy (3.10) to form a new set,

Ĥ =

{
h
∣∣h ∈ H,Ah3: ≤ λ1:

}
. (3.12)

The result of adding λ to all elements in Ĥ is the set of all valid variable node degree

distributions for a fixed number of edges. Notice all previously done analysis applies for ρ

as well as λ, so to find all valid degree distribution pairs, simply repeat the described steps

with ρ in place of λ.

3.1.2 Step 2: Bounds on Number of Edges. For the second step, assume without

loss of generality a fixed block length, n, fixed code rate, r, and fixed maximum variable

and check node degrees, dv and dc, respectively. There must be a minimum number of

edges possible for a valid LDPC code. To find this, first note that there are n variable

nodes and m = n(1− r) check nodes. Each variable and check node must have at least two

edges, as having less than this would make them a useless node for the belief propagation

algorithm. So, the minimum number of edges possible based on the variable nodes is 2n,

and the minimum number possible based on the check nodes is 2m. Since 0 < r < 1, m < n

by construction, so 2n forms a tighter bound on the minimum number of edges. Thus,

nmin
e = 2n. In other words, the minimum possible number of edges in the Tanner graph for

an LDPC code is twice the block length of the code.

The maximum number of edges possible for a valid LDPC code can be found in the

following way. For the belief propagation algorithm, there cannot be more than one edge

connecting any two nodes. Thus, each variable node can have at most the minimum of dv

and m edges. Similarly, each check node can have at most the minimum of dc and n edges.

So, since there are n variable nodes, the maximum number of edges possible based on the

variable nodes is n × min{dv,m}. Likewise, the maximum number of edges possible based

on the check nodes is m×min{dc, n}. The actual maximum number of edges possible, nmax
e ,

is thus given by the formula nmax
e = min{n×min{dv,m},m×min{dc, n}}.

27

www.manaraa.com

Algorithm 1: Minimum edges pair generation

Result: Generate valid pair for min number of edges
Fix block length n;
Fix code rate r;
Fix max variable node degree dv;
Fix max check node degree dc;
m := n(1− r);
nmin
e := 2n;
nmax
e := min{n×min{dv,m},m×min{dc, n}};
λ := (0, 2n, 0, . . . , 0)T ;
ρ := (0, 2m, 0, . . . , 0)T ;
k := 2m;
while k < 2n do

i := idx of first non-zero elt. of ρ;
Decrement ρi by i+ 1;
Increment ρi+1 by i+ 2;
k = k + 1;

end
λ = λ/nmin

e ;
ρ = ρ/nmin

e ;
return (λ, ρ)

3.1.3 Step 3: Obtaining a Valid Pair for Each Number of Edges. For the third

step, we explain an algorithm to find a valid degree distribution pair for every number of

edges between the minimum and maximum number possible, beginning with the minimum.

First, fix a block length, a code rate, and maximum variable and check node degrees. Second,

use step 2 to determine the minimum and maximum number of edges for these fixed values.

Then, set λ = (0, 2n, 0, . . . , 0)T and ρ = (0, 2m, 0, . . . , 0)T . Set k = 2m and while k < 2n, do

the following. First, let i be the index of the first non-zero element of ρ. Second, decrement

ρi by i+ 1. Third, increment ρi+1 by i+ 2. Finally, increment k by 1. When k = 2n, divide

both λ and ρ by nmin
e to obtain a valid degree distribution pair for the minimum possible

number of edges. This algorithm is detailed in Algorithm 1.

To generate valid degree distribution pairs for the remaining possible number of edges,

set k = nmin
e and while k ≤ nmax

e , follow the same steps described in the previous paragraph,

but do them for both λ and ρ simultaneously. The degree distribution pair produced at each

28

www.manaraa.com

step k forms a valid degree distribution pair for k edges.

Algorithm 2: Valid pair generation

Result: Generate all valid degree distribution pairs
Run Algorithm 1;
Initialize (Λj) to store valid variable node distributions for j edges;
Initialize (Rj) to store valid check node distributions for j edges;
k := nmin

e ;
while k ≤ nmax

e do

Construct Ĥλ as in (3.12) for λ;

Construct Ĥρ as in (3.12) for ρ;

Set Λk = λ+ Ĥλ;

Set Rk = ρ+ Ĥρ;
λ = kλ;
ρ = kρ;
i := idx of first non-zero elt. of λ;
Decrement λi by i+ 1;
Increment λi+1 by i+ 2;
i := idx of first non-zero elt. of ρ;
Decrement ρi by i+ 1;
Increment ρi+1 by i+ 2;
k = k + 1;
λ = λ/k;
ρ = ρ/k;

end
return ((Λj), (Rj));

In summary, this section showed it is possible to completely enumerate the entire space

of valid degree distribution pairs and provided analysis leading to the following algorithm for

doing so. First, fix all necessary variables and run Algorithm 1. Then, use step 3 to generate

one particular valid degree distribution pair for each number of edges between the minimum

and maximum. Finally, use step 1 and the generated pairs to generate all valid degree

distribution pairs for all possible number of edges. This algorithm is detailed in pseudocode

in Algorithm 2. For a given number of edges, all valid variable node degree distributions for

that number of edges and all valid check node degree distributions for that same number of

edges can together form a valid pair. So, the algorithm returns two sequences of sets of valid

variable and check node distributions, indexed by the number of edges.

29

www.manaraa.com

3.1.4 Complexity Analysis. This section concludes with a complexity analysis for the

number of floating-point operations (FLOPs) required for Algorithm 1 and Algorithm 2.

For Algorithm 1, 8 FLOPs are required prior to the while loop. The while loop runs

2n − 2m = 2n − 2(n(1 − r)) = 2nr times and requires 6 FLOPs each time, for a total of

12nr FLOPs. Finally, the divisions at the end of the algorithm require dv and dc FLOPs,

respectively. All together, Algorithm 1 requires 12nr + dv + dc + 8 = O(nr) FLOPs.

A similar, though far more complicated, analysis can be performed for Algorithm 2. Due

to space considerations, we will only provide a summary of the analysis and present upper

and lower bounds on the resulting complexity. The dominating contribution to the number

of FLOPs required for the algorithm comes from the construction of Ĥλ and Ĥρ. It can be

shown that for each k, the construction of these two sets requires

2k log

(
dvdc

9

)
+ (2d2v − 5dv − 7)

(2k)dv−3(3!)

dv!

+ (2d2c − 5dc − 7)
(2k)dc−3(3!)

dc!

(3.13)

FLOPs. Within the while loop, k ranges from nmin
e to nmax

e , so a lower bound on the number

of FLOPs in (3.13) can be found by replacing k with nmin
e = 2n, and an upper bound can

be found by replacing k with nmax
e , which for simplicity we will assume is ndv. As a lower

bound, constructing Ĥλ and Ĥρ requires

O
(
d2v

(4n)dv−3

dv!
+ d2c

(4n)dc−3

dc!

)
(3.14)

FLOPs, while as an upper bound the construction requires

O
(
d2v

(2ndv)
dv−3

dv!
+ d2c

(2ndv)
dc−3

dc!

)
(3.15)

FLOPs.

The while loop runs nmax
e − nmin

e = ndv − 2n = O(ndv) times, so the total number of

30

www.manaraa.com

FLOPs required for Algorithm 2 is bounded below by

O
(
nd3v

(4n)dv−3

dv!
+ ndvd

2
c

(4n)dc−3

dc!

)
(3.16)

and bounded above by

O
(
nd3v

(2ndv)
dv−3

dv!
+ ndvd

2
c

(2ndv)
dc−3

dc!

)
. (3.17)

Note that these bounds are polynomial in the block length n, but exponential in the max-

imum variable and check node degrees, dv, and dc. As a result, the algorithm becomes

computationally intractable if large maximum degrees are allowed. Fortunately, the enumer-

ation algorithms are useful primarily for small block lengths and the low density requirement

for LDPC codes ensures reasonably small dv and dc parameters.

3.2 Objective Function Visualization

This section provides an example for Algorithm 2. The example uses exceptionally small

values for block length and maximum variable and check node degrees to facilitate visualiza-

tion of the discrete nature of the space. Fix the block length n = 100, the code rate r = 1/2,

the maximum variable node degree dv = 4, and the maximum check node degree dc = 5.

Algorithm 2 is run on this example and the results are visualized for all of the corresponding

pairs for ne = 202 edges.

The three dimensional plot in Figure 3.1 represents the set of all valid variable node

distributions for 202 edges. Since λ0 = 0 and dv = 4, there are only three possible degrees of

freedom, plotted as the three axes in the plot. Algorithm 2 produces only two valid degree

distributions for ne = 202.

The plot shown in Figure 3.2 represents the corresponding set of all valid check node

distributions. Since dc = 5 and ρ0 = 0, there are four degrees of freedom, but only ρ2, ρ3,

and ρ4 are plotted. The construction of Ĥ in (3.12) reduces the degrees of freedom to only

31

www.manaraa.com

0

1

1

0.53

2

0.5

1

1

0.5

0 0

Figure 3.1: A visualization of the valid space of variable node degree distributions for ne =
202. Note there are only two valid distributions, located at the bottom right of the figure.

0

1

1

0.54

3

0.5

2

1

0.5

0 0

Figure 3.2: A visualization of the valid space of check node degree distributions for ne = 202.
Note the set forms a subset of a plane in R4.

32

www.manaraa.com

two, and therefore the valid space of check node distributions is a discrete subset of a plane

in R4. Note any combination of a variable node distribution from Figure 3.1 and a check

node distribution from Figure 3.2 forms a valid degree distribution pair for ne = 202.

3.3 Towards Optimization

The complete enumeration of degree distribution pairs presented in this work allows for

LDPC code optimization that is both flexible and accurate at small block lengths. Asymp-

totic optimization methods by nature are only capable of optimizing objective functions that

can be evaluated theoretically for infinite block length codes. In contrast, the enumeration

of all valid pairs combined with standard discrete optimization methods, such as those found

in [2], allows for the optimization of any objective function that takes as an input a valid de-

gree distribution pair. This opens the door for the optimization of LDPC codes with respect

to objective functions that utilize simulation of real codes, among other things. In addition,

since the search space for these methods will consist entirely of valid degree distribution

pairs of finite block length, an optimal pair obtained from such methods is guaranteed to be

optimal for the finite case, rather than only for the asymptotic case.

This chapter concludes with an example of an objective function that can be optimized

using our enumeration method. Again, fix the block length n = 100, rate r = 1/2, maximum

variable node degree dv = 4, and maximum check node degree dc = 5. The goal is to find

the degree distribution pair with these constraints that produces the LDPC code family that

minimizes the average BER through a simulated additive white Gaussian noise (AWGN)

channel at a fixed Eb/N0 = 0.1 dB. Define the objective function to accept a degree distri-

bution pair, run the simulations, and output the average BER for that pair.

Figure 3.3 and Figure 3.4 visualize the value of this objective function for every possible

degree distribution pair shown in Figure 3.1 and Figure 3.2. The plot in Figure 3.3 is con-

structed by plotting the two degrees of freedom (h3 and h4) for the check node distributions

against the objective function value for the left-most valid variable node distribution, while

33

www.manaraa.com

-1 -0.8 -0.6 -0.4 -0.2 0

h
3

0

0.2

0.4

0.6

0.8

1

h
4

0.6

0.8

1

1.2

1.4

1.6

B
E

R

10
-4

Figure 3.3: A visualization of the continuous dependence of BER on location in the space of
valid check node degree distributions for the left-most variable node degree distribution.

-1 -0.8 -0.6 -0.4 -0.2 0

h
3

0

0.2

0.4

0.6

0.8

1

h
4

0.6

0.8

1

1.2

1.4

1.6

B
E

R

10
-4

Figure 3.4: A visualization of the continuous dependence of BER on location in the space of
valid check node degree distributions for the right-most variable node degree distribution.

34

www.manaraa.com

Figure 3.4 is constructed similarly, but for the right-most valid variable node distribution.

There is a clearly discernible pattern to the BER as a function of the degree distribution

pair that can be exploited by discrete optimization methods to produce the optimal pair for

this objective function. Note that for ne = 202 like in the visualizations, the optimal pair

is
(
λ, ρ
)

=
(
(0, 196

202
, 6
202
, 0)T , (0, 0, 24

202
, 128
202
, 50
202

)T
)
, which corresponds to (h3, h4) = (− 64

202
, 40
202

)

for the left-most variable node degree distribution. However, a true optimization would also

need to account for degree distribution pairs with ne 6= 202 when optimizing the objective

function.

35

www.manaraa.com

Chapter 4. Timing Offset Estimator for

the Two-Antenna Problem

As mentioned in Chapter 2, this chapter presents an improved algorithm to estimate the

timing offset in order to solve the two-antenna problem. First, the algorithm is presented

and analyzed, and various modifications and hyperparameters specific to this context are

discussed. A complexity analysis for both the improved algorithm and the previously used

modified Nelder-Mead algorithm is then performed. The chapter concludes by comparing the

two algorithms and conclusively determining that the one presented in this work outperforms

the previous method.

4.1 Algorithm Derivation and Analysis

This section first presents the gradient-based algorithm used to estimate (2.23). Next, the

hyperparameters chosen for the algorithm are provided, as well as justification for these

values. This section concludes with an analysis of the temporal complexity and memory

storage requirements for both the new gradient-based algorithm and the modified Nelder-

Mead algorithm from [1].

Algorithm 3: Generic Gradient Descent

Result: Estimate minimizer of objective function
Define objective function f ;
Define gradient ∇f ;

Set initial guess τ (0);
Fix step size γ;
i = 0;
while termination condition not met do

τ (i+1) = τ (i) − γ∇f(τ (i));
i = i+ 1;

end

return τ (i)

36

www.manaraa.com

4.1.1 Gradient Approximation. Gradient descent is easily the most popular gradient-

based optimization algorithm due to its simplicity and effectiveness. This algorithm first

assumes access to the objective function, f , as well as the gradient of the objective function,

∇f . A step size, γ, and an initial guess, τ (0), are fixed in advance. The algorithm then

iterates, seeking to improve its guess for the minimizer τ with each iteration, until some

predetermined termination condition is met. At each iteration, the current guess for τ is

updated according to the rule τ (i+1) = τ (i)−γ∇f(τ (i)). The gradient of a function gives the

direction of greatest increase, so its negative is the direction of greatest decrease. Thus, the

gradient descent algorithm attempts to improve its guess for the function minimizer at each

iteration by moving the guess some step size in the direction of the negative gradient, with

the ultimate goal of converging to the true minimizer. The algorithm is shown in pseudocode

in Algorithm 3.

Utilizing the gradient descent algorithm for the timing offset estimator requires access

to gradient information. The appendix of [1] derives the partial derivatives of an equivalent

version of (2.22) with respect to both τ0 and τ1, and these partial derivatives can be combined

into a vector to form a gradient that could be used for the gradient descent algorithm.

However, computing this gradient requires knowledge of the channel gains h. As a result,

the true gradient cannot be used in an optimization algorithm for (2.23) because the h is

not estimated until after the optimization algorithm is run in practical systems.

Rather than define ∇f to be the true gradient, it is defined to be the function that

approximates the gradient using linear interpolation as described in [2]. Let T = {τ0, τ1, τ2}

be a set of 3 vector values for τ . Also define Y =
[
f(τ1) − f(τ0), f(τ2) − f(τ0)

]ᵀ
. From

Proposition 9.1 in [2], the set T is poised for linear interpolation if and only if the matrix

L =
[
τ1 − τ0, τ2 − τ0

]
is invertible. If a given set T is poised for linear interpolation, then

the gradient, denoted by α, can be approximated near the set T by solving the linear system

Lᵀα = Y.

37

www.manaraa.com

The approximate gradient function is defined to be

∇f(τ) = α = L−ᵀY, (4.1)

where Y and L are constructed as described using

T = {τ0, τ1, τ2} = {τ , τ + [0, 1/Q]ᵀ, τ + [1/Q, 0]ᵀ}. (4.2)

Note multiples of 1/Q are added in order to guarantee that τi ∈ T for all i.

4.1.2 Modification and Hyperparameters. In addition to the gradient approxima-

tion, a few additional adjustments are made to the standard gradient descent algorithm for

it to function appropriately as an estimator under the conditions of the two-antenna prob-

lem. First, since values for P and (P†P)−1 are only pre-computed and stored for τ ∈ T ,

it is necessary to ensure that all of the iterates τ (i) remain in the search space T . This is

accomplished primarily by rounding both components of τ (i) to the nearest multiple of 1/Q

at each iteration. For the edge case where a component of one of the iterates is less than −1,

that component is shifted to −1, and similarly if the component is greater than 1. Finally,

in the case where one of the elements used to construct T in the evaluation of ∇f has a

component less than −1 or greater than 1, the same component of all elements of T is shifted

to −1 or 1, respectively, before constructing Y.

Next, a reasonable termination condition must be established for the while loop. There

are a few termination conditions often used in practice for gradient descent algorithms. For

example, it is common to terminate the loop when the evaluated gradient drops below a

fixed, small, positive threshold, implying close proximity to a critical point of the objective

function. However, since the algorithm can only approximate the gradient on the discrete

search space T , continuous values of the gradient cannot be obtained, making it unlikely to

find a threshold value that works universally for objective functions constructed with any

38

www.manaraa.com

arbitrary received vector r. It is also common to terminate the loop when the absolute value

of the difference between the objective function evaluated at consecutive iterates drops below

a fixed, small, positive threshold. Unfortunately, this condition has the same pitfall as the

previous one, as continuous values of the objective function are unattainable over a discrete

search space.

The algorithm presented in this work uses a termination condition different from, but

inspired by the examples in the previous paragraph. Rather than terminate when consec-

utive iterates are close enough together to yield similar objective function evaluations, it

terminates the loop when an iterate is identical to a previous iterate. If it were not termi-

nated at that point, the discreteness of the space would force the iterates to cycle. This

termination condition would almost certainly never be met for a continuous search space,

but the condition works exceptionally well for the discrete search space T . It also means

that the approximated gradient is close enough to 0 to prevent the next iterate from step-

ping too far in the search space, likely implying proximity to a critical point. Finally, an

additional termination condition is added that is typical of gradient descent algorithms. To

avoid extremely rare cases where the iterates may wander for too long without repeating, the

algorithm terminates after a previously fixed maximum number of iterations are reached.

The first hyperparameter that must be fixed for the gradient descent algorithm is the

initial guess τ (0). It seems natural to set the initial guess to be the value in the search space

that is most likely a priori to represent the true timing offset. Since the true value of the

timing offset for both τ0 and τ1 is symmetrically distributed with mean 0, set τ (0) = [0 0]ᵀ.

The second, and far more complicated, hyperparameter to tune is the step size γ. For a

discrete search space, using too small of a value for γ would result in very slow convergence,

or at worst would prevent the algorithm from ever leaving the initial guess. On the other

hand, too large of a value for γ would result in far more error in the timing offset estimation.

The goal is to find the value of γ that results in the convergence of the gradient descent

algorithm in the fewest number of iterations. A typical grid search is used to accomplish

39

www.manaraa.com

this.

For the grid search algorithm, first fix a few values that will be held constant for the

estimators regardless of the true values of τ and h. Set N = 4 samples/symbol, Q = 32

parts/sample, and Lp = 124 pilot bits, meaning Np = 248 samples. The approximate

gradient descent algorithm is then simulated for each γ out of a carefully selected set of

possible values under various values of Eb/N0 (dB) and true h.

Each simulation first randomly selects 1000 true τ values such that −0.125 ≤ τ0 ≤ 0.125

and −1 ≤ τ1 ≤ 1. Note it could have equivalently selected τ such that −1 ≤ τ0 ≤ 1

and −0.125 ≤ τ1 ≤ −0.125. Next, simulated values for the received vector of samples r

are obtained using (2.16) with the given true value of h and values in w sampled from a

complex-valued Gaussian distribution with mean zero and variance corresponding to the

fixed value of Eb/N0 (dB). For each of these simulations, the average number of objective

function evaluations required for the approximate gradient descent algorithm to converge is

recorded, as well as if the algorithm is “successful.”

Definition 4.1. The timing estimator is successful if either the Euclidean distance between

the estimated τ̂ and the true τ is at most
√
2
Q

, or f(τ̂) ≤ f(τ). The first success condition

guarantees that the estimated τ̂ is one of the four nearest grid points to the true τ , while

the second condition takes into account the possibility that, due to noise, the minimizer of

the objective function may not be exactly the true value of τ , in which case the best the

estimator can do is find the minimizer over the search space.

Figure 4.1 plots the average number, over the 1000 simulations, of objective function

evaluations required for convergence against various possible step sizes for different values of

Eb/N0 (dB). Similarly, Figure 4.2 plots the number of successful estimations out of the 1000

simulations for these same step sizes and values of Eb/N0. These simulations were run for

various true values of h, but to avoid redundancy only plots for h = [1/
√

2 − 1/
√

2]ᵀ are

shown.

Note that different values of h produce similarly shaped plots, but over different values

40

www.manaraa.com

0.04 0.05 0.06 0.07 0.08 0.09 0.1

Step Size ()

10

12

14

16

18

20

22

24

26

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
F

u
n

c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

E
b
/N

0
 (dB) = 10

E
b
/N

0
 (dB) = 13

E
b
/N

0
 (dB) = 16

E
b
/N

0
 (dB) = 19

Figure 4.1: Plot of the average number of objective function evaluations necessary for con-
vergence of the approximate gradient descent algorithm for various step sizes assuming
h = [1/

√
2 − 1/

√
2]ᵀ.

0.04 0.05 0.06 0.07 0.08 0.09 0.1

Step Size ()

0

200

400

600

800

1000

N
u

m
b

e
r

o
f

S
u

c
c
e

s
s
fu

l
E

s
ti
m

a
ti
o

n
s

E
b
/N

0
 (dB) = 10

E
b
/N

0
 (dB) = 13

E
b
/N

0
 (dB) = 16

E
b
/N

0
 (dB) = 19

Figure 4.2: Plot of the number of successful timing offset estimations out of the 1000 simu-
lations performed for various step sizes assuming h = [1/

√
2 − 1/

√
2]ᵀ.

41

www.manaraa.com

of γ. These differences are insignificant for values of h of the same magnitude (as measured

by the norm), but have a scaling effect on the values of γ for h of different magnitudes. For

example, the plot shown in Figure 4.1 assumes ||h|| = 1. A value of h such that ||h|| = 2

results in an equivalent plot, but with all step size values multiplied by a factor of ||h||2 = 4.

We seek a value of γ such that successful convergence is obtained with the fewest number

of function evaluations over arbitrary values of h and Eb/N0. As the range of values for

γ varies depending on ||h||2, some form of normalization is required in order to compare

different potential values. It is impossible to know a priori the magnitude of h, but this

quantity can be estimated from the known quantity r since

||r|| = ||Ph + w|| ≤ ||Ph||+ ||w|| ≈ ||Ph|| (4.3)

for values of Eb/N0 in the considered range and

||Ph|| ≈ ||P||||h|| (4.4)

for typical values of P and h. A reasonably accurate approximation for ||h|| is obtained by

simulating values of w for various Eb/N0, producing r = Ph + w, then using a least squares

approximation to solve ||r|| = m||h|| + b for m and b. These values are pre-computed and

stored in order to appropriately normalize the step size.

The simulations shown in Figure 4.1 and Figure 4.2, as well as simulations using addi-

tional true values of h, indicate virtually 100% accuracy using an unnormalized γ ≤ 0.06.

They also indicate that on average the fewest number of function evaluations are required

when 0.06 ≤ γ ≤ 0.08, making γ = 0.06 a natural choice for the unnormalized step size. The

step size is then normalized based on the received r so that

γ =
0.06

||h||2
=

0.06

((||r|| − b)/m)2
, (4.5)

42

www.manaraa.com

where the unnormalized step size 0.06, b, andm are all pre-computed and stored. To conclude

the step size discussion, it is worth mentioning that for different values of N , Q, and Lp, the

best choice for the unnormalized γ is unlikely to remain 0.06, so the step size analysis would

have to be redone.

Algorithm 4: Modified Gradient Descent

Result: Estimate minimizer of objective function
Define objective function f using (2.23);
Define approximate gradient ∇f using (4.1);

Set initial guess τ (0) = [0 0]ᵀ;
Fix step size γ = 0.06

((||r||−b)/m)2
;

Initialize an empty set S;
Fix maximum number of iterations max iters;
i = 0;

while i < max iters & τ (i) /∈ S do
Add τ (i) to S;

τ (i+1) = round
(
τ (i) − γ∇f(τ (i))

)
;

i = i+ 1;

end

V = {τ (i), τ (i) + [0, 1/Q]ᵀ, τ (i) + [1/Q, 0]ᵀ, τ (i) + [1/Q, 1/Q]ᵀ};
return argminv∈V f(v)

Algorithm 4 summarizes the gradient-based algorithm used to estimate the timing offset,

including the various modifications to standard gradient descent and the hyperparameter

tuning. First, the objective function f is defined using (2.23) and the approximate gradient

is defined using (4.1). Next, fix the initial guess τ (0) and step size γ as described, before

initializing a set to hold the iterates τ (i), and fixing a maximum number of iterations. Then,

iterate by adding τ (i) to the set and setting the next iterate based on the previous iterate,

the step size, and the approximate gradient evaluation.

To conclude the algorithm, define

V = {τ (i), τ (i) + [0, 1/Q]ᵀ, τ (i) + [1/Q, 0]ᵀ, τ (i) + [1/Q, 1/Q]ᵀ}, (4.6)

where i corresponds to the iteration count at the end of the loop. Since the gradient at

43

www.manaraa.com

step i is approximated using the first three elements of V , the approximation is likely to be

most accurate for some value of τ roughly equal to the average of these three values. So, V

consists of the four elements of the search space closest to the most accurate approximation

of the critical point, meaning any τ ∈ V could represent the search space value closest to

the critical point of the objective function. Thus, compute the objective function value for

all V and return the τ with the smallest objective function value.

4.1.3 Complexity Analysis. Section 4.1 concludes with an analysis of the temporal and

spatial complexity of the approximate gradient descent algorithm, as well as the modified

Nelder-Mead algorithm from [1] for comparison. These complexities are expressed as func-

tions of the number of samples/symbol N , the number of pilot symbols ns (recall from Chap-

ter 2 that ns is equal to half of the number of pilot bits Lp) , and the quantization parameter

Q. Note that the practical implementation of the timing estimator occurs directly in hard-

ware, where there is a large difference between the complexity of a real addition/subtraction

and a real multiplication/division. For this reason, rather than lump them together by com-

paring the number of FLOPs between the algorithms, the real additions/subtractions and

real multiplications/divisions are compared separately.

Objective Function. As both algorithms require objective function evaluations, we first

count the number of real multiplications/divisions, additions/subtractions, and the amount

of memory storage required for an individual objective function evaluation. Note that the

memory storage analysis performed in [1] still applies to the situation in this work, so assume

that values for P and (P†P)−1 are pre-computed and stored for all τ ∈ T .

A simple count shows that each function evaluation requires

12N2n2
s + 20Nns (4.7)

44

www.manaraa.com

real multiplications/divisions, and

10N2n2
s + 14Nns − 1 (4.8)

real additions/subtractions. Rather than store the entire matrix P for all τ ∈ T , a column

of P is stored for each possible τi, and these columns are combined into P for a given τ . So,

to store values of P for all quantized τ requires storing

(2Q+ 1)(4Nns) = 8QNns + 4Nns (4.9)

real values. In addition, the memory storage required for (P †P)−1 is

8(2Q+ 1)2 = 32Q2 + 32Q+ 8 (4.10)

real values. Combining (4.9) and (4.10), this amounts to a total memory storage requirement

of

32Q2 + 32Q+ 8QNns + 4Nns + 8 (4.11)

real values.

Approximate Gradient Descent. The approximate gradient descent algorithm re-

quires real multiplications/divisions, real additions/subtractions, and memory storage above

and beyond what is required for every objective function evaluation. Prior to the while

loop, this algorithm requires the computation of the initial step size, three objective func-

tion evaluations, and one gradient approximation. The initial step size computation requires

Nns + 3 (4.12)

multiplications/divisions, and

Nns (4.13)

45

www.manaraa.com

additions/subtractions. The requirements for the three objective function evaluations were

already discussed. Finally, the gradient approximation involves solving a small system of

linear equations and requires approximately 18 real multiplications/divisions and 5 real

additions/subtractions. All together, the portion of the algorithm before the while loop

requires

(Nns + 3) + 3(12N2n2
s + 20Nns) + 18 = 36N2n2

s + 61Nns + 21 (4.14)

real multiplications/divisions, and

(Nns) + 3(10N2n2
s + 14Nns − 1) + 5 = 30N2n2

s + 43Nns + 2 (4.15)

real additions/subtractions.

Next, each iteration of the while loop requires 3 objective function computations, one

gradient approximation, and some overhead, like computing the next step size/iterate. To-

gether, these combine for

3(12N2n2
s + 20Nns) + (18) + (5) = 36N2n2

s + 60Nns + 23 (4.16)

real multiplications/divisions, and

3(10N2n2
s + 14Nns − 1) + (5) + (5) = 30N2n2

s + 42Nns + 9 (4.17)

real additions/subtractions per-iteration.

After the while loop portion, this algorithm evaluates one more objective function value,

and has a little bit of additional overhead. Combining these, we have

12N2n2
s + 20Nns + 2 (4.18)

46

www.manaraa.com

real multiplications/divisions, and

10N2n2
s + 14Nns + 1 (4.19)

real additions/subtractions.

Finally, in addition to the values stored for the objective function computations, the

computation of the step size requires the storage of 3 more real values, bringing the total

amount of memory storage for this algorithm to

32Q2 + 32Q+ 8QNns + 4Nns + 11 (4.20)

real values.

Modified Nelder-Mead. Similar to the approximate gradient descent algorithm, the

modified Nelder-Mead algorithm from [1] requires some additional real multiplications/divisions,

real additions/subtractions, and memory storage on top of what is required for the objective

function computation. The analysis of that algorithm is provided here as well for the sake of

comparison. Prior to any iterations, the modified Nelder-Mead algorithm builds the initial

simplex, requiring 3 objective function evaluations and 3 additions. In total, the pre-iteration

requirement for this algorithm is

3(12N2n2
s + 20Nns) = 36N2n2

s + 30Nns (4.21)

real multiplications/divisions, and

3(10N2n2
s + 14Nns − 1) + (3) = 30N2n2

s + 42Nns + 2 (4.22)

real additions/subtractions.

Each iteration of the modified Nelder-Mead algorithm requires one objective function

evaluation and one simplex manipulation. There are a variety of types of simplex manipu-

47

www.manaraa.com

lations that could occur, and each has a slightly different (though admittedly insignificant)

complexity. Using the requirements for the worst case yields

12N2n2
s + 20Nns + 7 (4.23)

real multiplications/divisions, and

10N2n2
s + 14Nns + 5 (4.24)

real additions/subtractions for each iteration.

Strictly speaking, the post-iteration portion of the algorithm only contributes 2 multi-

plications. However, we choose to include the switch from the standard to the unit simplex

here as well, since this is only performed once during the algorithm. So, this step requires 4

multiplications/divisions, and 8 additions/subtractions.

The modified Nelder-Mead algorithm requires no memory storage other than what is

required for the objective function computation. So the requirement is

32Q2 + 32Q+ 8QNns + 4Nns + 8 (4.25)

real values.

4.2 Comparison to Previous Method

This section compares the approximate gradient descent optimization method proposed in

this work with the modified Nelder-Mead method used previously. The accuracy and vari-

ance of the estimators are compared first. The section concludes with a comparison of the

computational complexity required for the convergence of each of the two methods.

48

www.manaraa.com

0 5 10 15 20 25 30

E
b
/N

0
 (dB)

90

92

94

96

98

100

A
c
c
u

ra
c
y
 (

%
)

Approximate Gradient Descent

Nelder-Mead

Figure 4.3: Accuracy (as measured by the percentage of successful estimates) of both the
approximate gradient descent and modified Nelder-Mead algorithms as functions of Eb/N0

(dB).

4.2.1 Accuracy and Variance. The accuracy of the two algorithms is first compared,

measured as the percentage of successful timing estimations, where a successful estimation

is defined as in Definition 4.1. As it is obviously impossible to simulate the accuracy of the

estimator for all possible true values of τ , a test case is simulated instead. This allows for

the variance of the two estimators to be compared with the Cramér-Rao bound (CRB), a

lower bound on the variance dependent on the true τ . The true τ is set to [0.123, 0.6]ᵀ,

a value chosen to not be on the grid represented by the search space in order to avoid

artificially good results. Then 5000 noise vectors w are randomly generated for various

values of Eb/N0, the corresponding values of r are constructed, and the timing offset is

estimated with both algorithms for each r. At each simulated value of Eb/N0, the percentage

of successful estimates are recorded. The results are plotted in Figure 4.3. Note that since

the channel estimator is simply a least-squares approximation based on the result of the

timing estimator, its accuracy is primarily a function of the timing estimator accuracy.

49

www.manaraa.com

Figure 4.3 shows that the approximate gradient descent algorithm achieves virtually 100

percent accuracy for all simulated values of Eb/N0. On the other hand, while the modified

Nelder-Mead algorithm still obtains above 99 percent accuracy for all simulated values, the

accuracy is noticeably lower than the approximate gradient descent algorithm for smaller

values of Eb/N0.

Another quantity of interest is the variance of the estimators. To compare the variance

between the two algorithms, the same simulations are run as those run for the accuracy.

In addition to recording the number of successes at each Eb/N0, the simulated estimator

variance is recorded for each algorithm for six real-valued quantities: τ0, τ1, and both the

real and imaginary parts of h0 and h1. The computed variances of τ0 and τ1 are summed to

estimate the error variance for the timing estimator, while the computed variance of the real

and imaginary parts of h0 and h1 are summed to estimate the error variance for the channel

estimator. Finally, the CRB on the variance of each estimator is computed for reference.

The Fisher information matrix necessary for the computation of the CRB for each estimator

is derived in the Appendix of [1], except that it adds an additional row and column to

account for the frequency estimator. Since this work assumes the frequency offset is zero,

only the upper-left 6× 6 submatrix of the derived Fisher information matrix is used for the

computation of the CRB.

The results of these simulations are seen in Figure 4.4 and Figure 4.5. The timing esti-

mator variance in Figure 4.4 shows that both algorithms achieve roughly the same variance,

and that this variance is close to the CRB for Eb/N0 ≤ 20 dB. At higher values of Eb/N0,

the variance reaches a lower bound due to the quantization of the search space. The channel

estimator variance in Figure 4.5 has similar characteristics to the timing estimator variance,

except that it does not face the same quantization issue, so the simulated variance continues

to decrease for Eb/N0 > 20 dB.

4.2.2 Convergence Complexity. This subsection compares the computational com-

plexity required for convergence for each of the two algorithms. Assume, as has been done

50

www.manaraa.com

0 5 10 15 20 25 30

E
b
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

T
im

in
g

 E
s
ti
m

a
to

r
E

rr
o

r
V

a
ri
a

n
c
e Approximate Gradient Descent

Nelder-Mead

CRB

Figure 4.4: Error variance for the timing estimator for both algorithms, as well as the CRB
for this variance, as a function of Eb/N0 (dB).

0 5 10 15 20 25 30

E
b
/N

0
 (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

C
h

a
n

n
e

l
E

s
ti
m

a
to

r
E

rr
o

r
V

a
ri
a

n
c
e Approximate Gradient Descent

Nelder-Mead

CRB

Figure 4.5: Error variance for the channel estimator for both algorithms, as well as the CRB
for this variance, as a function of Eb/N0 (dB).

51

www.manaraa.com

up to this point, that N = 4 samples/symbol, ns = 62 pilot symbols, and Q = 32 quantized

parts per symbol. First, using the complexity equations for each algorithm from Section 4.1.3,

we build a table of the number of real multiplications/divisions, real additions/subtractions,

and real values of memory storage necessary for each algorithm under these assumptions.

Algorithm Complexity Comparison
Gradient Descent Nelder-Mead

Average Number of Iterations
Iterations 5.229 35.117

Multiplications/Divisions
Pre-Iteration 2,229,293 2,221,584
Per-Iteration 2,229,047 743,015
Post-Iteration 743,010 4
Avg Total Cost 14,628,088 28,314,133

Additions/Subtractions
Pre-Iteration 1,855,786 1,855,538
Per-Iteration 1,855,545 618,517
Post-Iteration 618,513 8
Avg Total Cost 12,177,025 23,576,079

Memory Storage
Memory Storage 98,283 98,280

Table 4.1: Comparison of the number of iterations, real multiplications/divisions, addi-
tions/subtractions, and memory storage required for various portions of the two algorithms.
The units for numerical values in the table are “number of iterations” for the first section,
“real operations” for the next two sections, and “real values to store” for the memory section.

Equations (4.14), (4.16), and (4.18) give the number of real multiplications/divisions per-

formed by Algorithm 4 prior to the while loop, at each iteration of the while loop, and after

the while loop, respectively. Equations (4.15), (4.17), and (4.19) provide the same informa-

tion for real additions/subtractions. For the modified Nelder-Mead algorithm, (4.21), (4.23),

and the additional 4 mentioned in the text give the number of real multiplications/divisions,

while (4.22), (4.24), and the additional 8 mentioned in the text give the number of real

additions/subtractions. Finally, (4.20) and (4.25) provide the memory storage requirements

for approximate gradient descent and modified Nelder-Mead, respectively. We plug in our

values for N , ns, and Q, into each of these equations, and summarize the results in Table

4.1.

52

www.manaraa.com

It is immediately apparent that both the per-iteration and post-iteration complexity is

significantly higher for approximate gradient descent than for modified Nelder-Mead. The

per-iteration difference can be easily explained by the fact that one iteration of gradient

descent requires three objective function evaluations, while one iteration of modified Nelder-

Mead only requires one. The difference in post-iteration complexity is due to the additional

function evaluation necessary for approximate gradient descent discussed at the end of Sec-

tion 4.1.2.

Given the computational complexity comparison between the two algorithms, it is clear

that for approximate gradient descent to outperform modified Nelder-Mead, it must be able

to converge to the timing estimate in roughly three times fewer iterations. To test this, we

fix Eb/N0 = 10 (dB) and we fix a set

H = {[1, −1]ᵀ/
√

2, [2, −2]ᵀ/
√

2, [0.5, −0.5]ᵀ/
√

2, [1, −2]ᵀ/
√

2, [2, −1]ᵀ/
√

2} (4.26)

of values for h. Then for each true h ∈ H, 2500 true values of τ are drawn uniformly such

that −0.125 ≤ τ0 ≤ 0.125 and −1 ≤ τ1 ≤ 1, and values of r are constructed using (2.16) with

the noise w drawn according to the assumption for Eb/N0. On each constructed r, τ is esti-

mated using both the approximate gradient descent algorithm and the modified Nelder-Mead

algorithm, and the number of real additions/subtractions and real multiplications/divisions

required for convergence are counted for both algorithms.

A histogram comparing the results for real additions/subtractions is shown in Figure 4.6,

and a histogram comparing the results for real multiplications/divisions is shown in Figure

4.7. Despite the fact that the approximate gradient descent algorithm requires more oper-

ations per-iteration and post-iteration than does modified Nelder-Mead, the total number

of iterations required is reduced significantly enough that the total number of operations

necessary for convergence is actually much lower.

It is commonly known that gradient-based optimizers work best for convex optimization

problems, and this case is no exception. The approximate gradient descent algorithm is far

53

www.manaraa.com

Figure 4.6: Histogram of the number of real additions/subtractions required for convergence
for both algorithms.

Figure 4.7: Histogram of the number of real multiplications/divisions required for conver-
gence for both algorithms.

54

www.manaraa.com

less computationally expensive than the modified Nelder-Mead algorithm used previously,

and these improvements can be made without sacrificing the accuracy or variance of the

estimator. Thus, it is clear that the algorithm set forth in this chapter is preferred over the

previous algorithm.

55

www.manaraa.com

Chapter 5. Conclusion

This chapter concludes the thesis. The contributions of this work are summarized, and the

major results are highlighted. Finally, a discussion of potential future work is provided.

5.1 Summary of Major Results

This work focused on applications of mathematical optimization to digital communications

and signal processing. Algorithms were developed for the purpose of solving specific opti-

mization problems related to the channel encoder/decoder and the modulator/demodulator

within a communications system.

For the channel encoder/decoder, an algorithm was developed and analyzed for com-

pletely enumerating the valid space of degree distribution pairs for LDPC codes of finite

block length. The necessary mathematical analysis to demonstrate the validity and com-

plexity of the method was performed, and the algorithm was run on an example to visualize

the results.

For the modulator/demodulator, an improved optimization method for the timing esti-

mator in the two-antenna problem was developed and analyzed. This gradient-based method

refuted the claim that gradient information could not be used in this application. The de-

sign choices and hyperparameters for the algorithm were explored in detail, and a complexity

analysis of the algorithm was performed. Simulations comparing the new algorithm with the

previous algorithm showed a significant improvement in the speed of the algorithm without

sacrificing the accuracy.

5.2 Future Work

Future work related to both developed algorithms is necessary for the contributions of this

work to realize their full potential. For the finite block length LDPC code space enumeration

56

www.manaraa.com

algorithm, the obvious next step is to develop an objective function and corresponding

optimization method that searches over the discrete space generated by the enumeration

algorithm for the degree distribution pair which provides the best objective function value.

If the developed objective function is comparable to an objective function commonly used for

asymptotic LDPC code optimization methods, it would be interesting to see if the discrete

optimization method utilizing the enumeration algorithm could outperform an asymptotic

optimization method for small block lengths. For the improved timing offset estimator, the

next step is to generalize the estimators to include a frequency estimator in addition to the

timing and channel estimators. Following that generalization, the estimators could be tested

on a real-life system as was done in [27].

57

www.manaraa.com

Bibliography

[1] M. Rice, J. Palmer, C. Lavin, and T. Nelson. Space-time coding for aeronautical teleme-
try: Part I—Estimators. IEEE Transactions on Aerospace and Electronic Systems,
53(4):1709–1731, 2017.

[2] Charles Audet and Warren Hare. Derivative-Free and Blackbox Optimization. Springer
International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland, 2017.

[3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[4] Jon Dattorro. Convex optimization & Euclidean distance geometry. Lulu. com, 2010.

[5] Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning.
Foundations and Trends® in Machine Learning, 10(3-4):142–336, 2017.

[6] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.

[7] R Gary Parker and Ronald L Rardin. Discrete optimization. Elsevier, 2014.

[8] C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27:379–
423, 623–656, July, Oct. 1948.

[9] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting
coding and decoding: Turbo-codes. In IEEE International Conference on Communica-
tions, volume 2, pages 1064–1070, 1993.

[10] E. Arikan. Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels. IEEE Transactions on Information
Theory, 55(7):3051–3073, 2009.

[11] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low density parity
check codes. Electronics Letters, 33(6):457–458, Mar. 1997.

[12] M. A. Jensen, M. D. Rice, and A. L. Anderson. Aeronautical telemetry using
multiple-antenna transmitters. IEEE Transactions on Aerospace and Electronic Sys-
tems, 43(1):262–272, 2007.

[13] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer
Journal, 7(4):308–313, 01 1965.

[14] S. Giddens, M. A. C. Gomes, J. P. Vilela, J. L. Santos, and W. K. Harrison. Enumeration
of the degree distribution space for finite block length LDPC codes. Under Review.

[15] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.

[16] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse matrices. In Colin
Boyd, editor, Cryptography and Coding 5th IMA Conf., number 1025 in Lecture Notes
in Computer Science, pages 100–111. Springer, Berlin, Germany, 1995.

58

www.manaraa.com

[17] D. J. C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE
Trans. Inf. Theory, 45(2):399–431, Mar. 1999.

[18] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on
Information Theory, 27(5):533–547, Sep. 1981.

[19] T. J. Richardson and R. L. Urbanke. The capacity of low-density parity-check codes
under message-passing decoding. IEEE Transactions on Information Theory, 47(2):599–
618, 2001.

[20] Tom Richardson and Rüdiger Urbanke. Modern Coding Theory. Cambridge University
Press, New York, NY, 2008.

[21] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons,
Inc., Hoboken, NJ, 2006.

[22] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke. Design of capacity-approaching
irregular low-density parity-check codes. IEEE Transactions on Information Theory,
47(2):619–637, Feb 2001.

[23] S. ten Brink, G. Kramer, and A. Ashikhmin. Design of low-density parity-check codes
for modulation and detection. IEEE Transactions on Communications, 52(4):670–678,
2004.

[24] M. Ivkovic, S. K. Chilappagari, and B. Vasic. Eliminating trapping sets in low-density
parity-check codes by using Tanner graph covers. IEEE Transactions on Information
Theory, 54(8):3763–3768, 2008.

[25] Sae-Young Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the design of
low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commu-
nications Letters, 5(2):58–60, Feb 2001.

[26] S. Abu-Surra, D. Divsalar, and W. E. Ryan. Enumerators for protograph-based ensem-
bles of LDPC and generalized LDPC codes. IEEE Transactions on Information Theory,
57(2):858–886, 2011.

[27] M. Rice, T. Nelson, J. Palmer, C. Lavin, and K. Temple. Space-time coding for aero-
nautical telemetry: Part II—Decoder and system performance. IEEE Transactions on
Aerospace and Electronic Systems, 53(4):1732–1754, 2017.

[28] Proakis. Digital Communications 5th Edition. McGraw Hill, 2007.

[29] E. Perrins and M. Rice. Optimal and reduced complexity receivers for m-ary multi-h
cpm. In 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat.
No.04TH8733), volume 2, pages 1165–1170 Vol.2, 2004.

59

	Applications of Mathematical Optimization Methods to Digital Communications and Signal Processing
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview of Optimization Methods
	1.2 Digital Communications and Signal Processing
	1.3 Contributions

	2 Background
	2.1 LDPC codes
	2.2 Two-Antenna Problem

	3 Search Space Enumeration for LDPC Code Optimization
	3.1 Algorithm Derivation and Analysis
	3.2 Objective Function Visualization
	3.3 Towards Optimization

	4 Timing Offset Estimator for the Two-Antenna Problem
	4.1 Algorithm Derivation and Analysis
	4.2 Comparison to Previous Method

	5 Conclusion
	5.1 Summary of Major Results
	5.2 Future Work

	Bibliography

